Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510987

RESUMO

Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.


Assuntos
Sinapses , Transmissão Sináptica , Potenciais de Ação/fisiologia , Animais , Camundongos , Neurotransmissores , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
2.
J Physiol ; 598(11): 2199-2222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246836

RESUMO

KEY POINTS: Kv3.1 and Kv3.3 subunits are highly expressed in the auditory brainstem, with little or no mRNA for Kv3.2 or Kv3.4. Changes in Kv3 currents and action potential (AP) firing were analysed from wild-type, Kv3.1 and Kv3.3 knockout (KO) mice. Both Kv3.1 and Kv3.3 immunostaining was present and western blots confirmed loss of subunit protein in the respective KO. Medial nucleus of the trapezoid body (MNTB) AP repolarization utilized Kv3.1 and/or Kv3.3; while in the lateral superior olive (LSO) Kv3.3 was essential. Voltage-gated calcium currents were unchanged between the genotypes. But APs evoked higher [Ca2+ ]i in LSO than MNTB neurons; and were highest in the Kv3.3KO, consistent with longer AP durations. High frequency stimulation increased AP failure rates and AP latency in LSO neurons from the Kv3.3KO, underlining the physiological consequences for binaural integration. LSO neurons require Kv3.3 for functional Kv3 channels, while MNTB neurons can utilize either Kv3.1 or Kv3.3 subunits. ABSTRACT: Kv3 voltage-gated potassium channels mediate action potential (AP) repolarization. The relative importance of Kv3.1 and Kv3.3 subunits for assembly of functional channels in neurons of the auditory brainstem was examined from the physiological perspective that speed and precision of AP firing are crucial for sound source localization. High levels of Kv3.1 and Kv3.3 mRNA and protein were measured, with no evidence of compensation by Kv3.2 or Kv3.4 in the respective knockout (KO) mouse. Using the KOs, composition of Kv3 channels was constrained to either Kv3.1 or Kv3.3 subunits in principal neurons of the medial nucleus of the trapezoid body (MNTB) and lateral superior olive (LSO); while TEA (1 mm) was employed to block Kv3-mediated outward potassium currents in voltage- and current clamp experiments. MNTB neuron APs (half-width 0.31 ± 0.08 ms, n = 25) were fast, reliable, and showed no distinction between channels assembled from Kv3.1 or Kv3.3 subunits (in the respective KO). LSO AP half-widths were also fast, but absolutely required Kv3.3 subunits for fast repolarization (half-widths: 0.25 ± 0.08 ms, n = 19 wild-type, 0.60 ± 0.17 ms, n = 21 Kv3.3KO, p = 0.0001). The longer AP duration increased LSO calcium influx and AP failure rates, and increased AP latency and jitter during high frequency repetitive firing. Both Kv3.1 and Kv3.3 subunits contribute to Kv3 channels in the MNTB (and compensate for each other in each KO); in contrast, LSO neurons require Kv3.3 subunits for fast repolarization and to sustain AP firing during high frequency stimulation. In conclusion, Kv3 channels exhibit both redundancy and Kv3.3 dominance between the brainstem nuclei involved in sound localization.


Assuntos
Vias Auditivas , Corpo Trapezoide , Potenciais de Ação , Animais , Tronco Encefálico , Camundongos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...